
UNIVERSITY OF OSLO

Fluid and solid interaction modelling of cerebral functions

Lars Willas Dreyer

Hydrocephalus 2025 World Congress

September 6, 2025

The talk will be split into three parts:

The talk will be split into three parts:

1) What is cerebral continuum mechanics (CCM)?

The talk will be split into three parts:

- 1) What is cerebral continuum mechanics (CCM)?
- 2) CCM and NPH, how do they relate?

The talk will be split into three parts:

- 1) What is cerebral continuum mechanics (CCM)?
- 2) CCM and NPH, how do they relate?
- 3) CCM and you: Bridging models and measurements.

 Continuum mechanics- study of the physics of fluids and solids

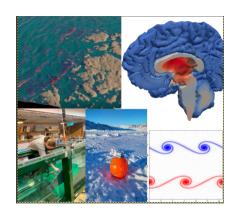


Figure: Mechanics research activity at UiO. (With Øystein Lande, Karen Samseth, Jean Rabault and Mikael Mortensen)

- Continuum mechanics- study of the physics of fluids and solids
- One such application, the CNS

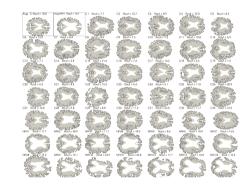


Figure: Figure from Dreyer et al. 2024

- Continuum mechanics- study of the physics of fluids and solids
- One such application, the CNS
- Models across scales

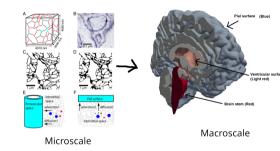


Figure: Left: Holter et al. (2017), right: Dreyer et al. (2024)

- Continuum mechanics- study of the physics of fluids and solids
- One such application, the CNS
- Models across scales
- The glymphatic system

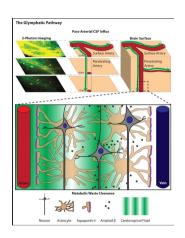


Figure: By Jeffery J. Iliff, from Wikimedia under the public domain

- Continuum mechanics- study of the physics of fluids and solids
- One such application, the CNS
- Models across scales
- The glymphatic system
- But how do we work?

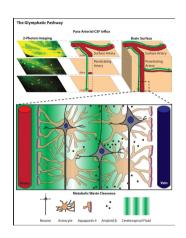
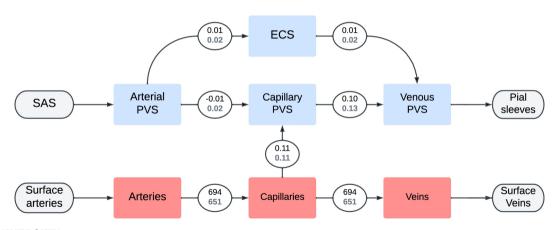


Figure: By Jeffery J. Iliff, from Wikimedia under the public domain

Our 2024 model setup

Dreyer et al. Fluids and Barriers of the CNS (2024) 21:82 https://doi.org/10.1186/s12987-024-00582-0 Fluids and Barriers of the CNS


RESEARCH Open Access

Modeling CSF circulation and the glymphatic system during infusion using subject specific intracranial pressures and brain geometries

Lars Willas Dreyer^{1,3}, Anders Eklund², Marie E. Rognes^{1,7}, Jan Malm⁶, Sara Qvarlander², Karen-Helene Støverud^{2,4}, Kent-Andre Mardal^{1,3,5,7*} and Vegard Vinje^{1,5,8}

Our 2024 model setup

Fluid transfer before infusion

 Decide on model target: (Ventriculomegaly, infusion tests or other.)

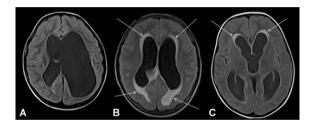


Figure: Figure from Kartal and Algin (2014)

- 1. Decide on model target:
- 2. Decide on governing equations.

Our 2024 model

Fluid flow in seven compartments. Transport of blood/water through pressure differences.

$$C_i \frac{\partial p_i}{\partial t} = -\frac{\kappa_i}{\mu_i} \nabla^2 p_i + \sum_{i \neq j} \omega_{i,j} (p_i - p_j). \tag{1}$$

- 1. Decide on model target:
- 2. Decide on governing equations.
- 3. Literature review, what do we know?

From: Modeling CSF circulation and the glymphatic system during infusion using subject specific intracranial pressures and brain geometries

Parameter	Value	Units	Source
Wax	1.45 - 10 ⁻⁶	Pa ⁻¹ s ⁻¹	(46)
ωt _{C,V}	$8.75 \cdot 10^{-6}$	Pa-1 s-1	[47]
W _{e,pe}	8.48 · 10 ⁻¹⁰	Pa ⁻¹ s ⁻¹	(31)
ω _{ρα,ε}	1.86 - 10 ⁻⁷	Pa-1 s-1	[31]
Wyre	$1.65 \cdot 10^{-7}$	Pa-1s-1	[31]
ω _{pa.pe}	10-6	Pa-1s-1	Estimated
Wpc,pr	10-6	Pa-1s-1	Estimated
u _{pe,e}	10-10	Pa-1s-1	Estimated
на.	3.63×10^4	nm ²	(31, 56)
K _C	1.44×10^{3}	nm ²	(52)
Ky	1.13×10^6	nm ²	[31, 56]
Ke	20	nm ²	[14]
$\kappa_{\rm ph}$	30	nm²	[31, 56]
к _{рс}	1.44×10^{3}	nm ²	[52]
K _{trr}	1.95×10^4	nm ²	[31, 56]
ϕ_n	1.09 - 10 ⁻²	-	[58, 59]
φ.	$2.31 \cdot 10^{-3}$	-	[58]
ψı	1.98 - 10-2	-	[58]
φμι	1.52 - 10-2		[11]
ϕ_{pc}	$2.31 \cdot 10^{-3}$		[55]
ϕ_{pr}	$2.77 \cdot 10^{-2}$	-	[11]
ø.	$1.40 \cdot 10^{-1}$	-	[60]

The porosities are dimensionless and are therefore marked with -

Figure: Table from Dreyer et al. (2024)

- 1. Decide on model target:
- 2. Decide on governing equations.
- 3. Literature review, what do we know?

We want to check what our model implies

From: Modeling CSF circulation and the glymphatic system during infusion using subject specific intracranial pressures and brain geometries

Parameter	Value	Units	Source
Wast	$1.45 \cdot 10^{-6}$	Pa-1s-1	(46)
$\omega_{e,v}$	$8.75 \cdot 10^{-6}$	Pa ⁻¹ s ⁻¹	[47]
W _{c,pc}	$8.48 \cdot 10^{-10}$	Pa-1s-1	[31]
ω _{pa,e}	1.86 - 10 ⁻⁷	Pa-1s-1	[31]
ω _{pv,e}	1.65 - 10-7	Pa-1s-1	[31]
$\omega_{pa,pc}$	10-6	Pa-1s-1	Estimated
ω _{pr,pπ}	10-6	$p_{a}^{-1}s^{-1}$	Estimated
$\omega_{pr,o}$	10-10	Pa-1s-1	Estimated
κ _n	3.63×10^4	nm ^q	[31, 56]
H _C	1.44×10^3	nm²	[52]
K _V	1.13×10^{6}	nm ²	[31, 56]
Ke	20	nm ²	[14]
H _{pm}	30	nm ²	[31, 56]
Rpc	1.44×10^3	nm ²	[52]
K _{trr}	1.95×10^4	nm²	(31, 56)
$\phi_{\rm A}$	$1.09 \cdot 10^{-2}$	-	[58, 59]
Ø.	$2.31 \cdot 10^{-3}$	-	[58]
φ,	$1.98 \cdot 10^{-2}$	-	[58]
ϕ_{pn}	$1.52 \cdot 10^{-2}$		[11]
ϕ_{pc}	$2.31 \cdot 10^{-3}$		[55]
$\phi_{\mu\nu}$	$2.77 \cdot 10^{-2}$	-	[11]
ø.	$1.40 \cdot 10^{-1}$	-	[60]

The porosities are dimensionless and are therefore marked with -

Figure: Table from Dreyer et al. (2024)

- 1. Decide on model target:
- 2. Decide on governing equations.
- 3. Literature review, what do we know?We want to check what our model implies
- 4. Validate against known data.

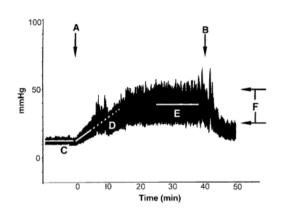


Figure: Kahlon, Sundbärg and Rehncrona (2005)

 Model results vs. theoretical expectation

 Model results vs. theoretical expectation

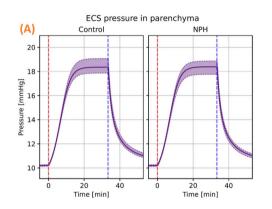


Figure: Generic infusion test. From Dreyer et al. (2024)

 Model results vs. theoretical expectation

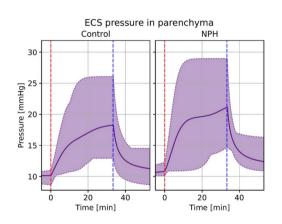


Figure: Infusion test with subject specific data. From Dreyer et al. (2024)

- Model results vs. theoretical expectation
- Parameter uncertainty lead to span in predictions

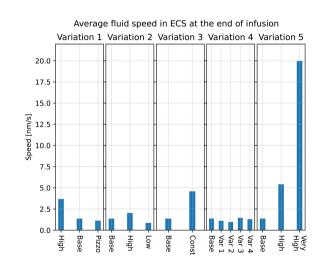


Figure: Figure from Dreyer et al. (2024)

- Model results vs. theoretical expectation
- Parameter uncertainty lead to span in predictions
- Implications for diffusion/convection dominated transport

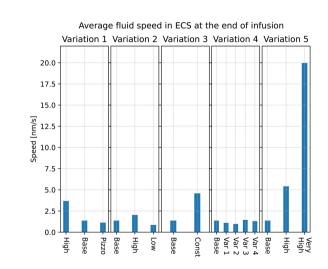


Figure: Figure from Dreyer et al. (2024)

What can we learn from models?

Models functions as highly flexible laboratories

What can we learn from models?

- Models functions as highly flexible laboratories
- Goal: Explain phenomena that are difficult to measure

What can we learn from models?

- Models functions as highly flexible laboratories
- Goal: Explain phenomena that are difficult to measure
- And make predictions which can be verified experimentally

Bibliography

- Kartal, Merve Gulbiz, and Oktay Algin. "Evaluation of hydrocephalus and other cerebrospinal fluid disorders with MRI: an update." Insights into imaging 5.4 (2014): 531-541.
- Holter, Karl Erik, et al. "Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow." Proceedings of the National Academy of Sciences 114.37 (2017): 9894-9899.
- Kahlon, Babar, Göran Sundbärg, and Stig Rehncrona. "Lumbar infusion test in normal pressure hydrocephalus." Acta neurologica scandinavica 111.6 (2005): 379-384.

Bibliography II

- Eide, Per Kristian, et al. "Sleep deprivation impairs molecular clearance from the human brain." Brain 144.3 (2021): 863-874
- Dreyer, Lars Willas, et al. "Modeling CSF circulation and the glymphatic system during infusion using subject specific intracranial pressures and brain geometries." Fluids and Barriers of the CNS 21.1 (2024): 82.
- Vinje, Vegard, et al. "Intracranial pressure elevation alters CSF clearance pathways." Fluids and Barriers of the CNS 17.1 (2020): 29.

Thanks to

- Vegard Vinje
- Kent-Andre Mardal
- Marie Elisabeth Rognes
- Karen-Helene Støverud
- Anders Eklund

- Sara Qvarlander
- Jan Malm
- Atle Jensen
- Jean Rabault
- Lars Magnus Valnes
- The 47 subjects from the study

Fluid and solid interaction modelling of cerebral functions

Lars Willas Dreyer